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Mean-Field Bounds and Correlation Inequalities 
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I prove a new correlation inequality for a class of N-component classical 
ferromagnets (1 < N < 4). This inequality implies that the correlation functions 
decay exponentially and the spontaneous magnetization is zero, above the 
mean-field critical temperature. 
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Recently it has been shown, for a variety of classical lattice systems, that 
the mean-field critical temperature T~  F is a rigorous upper bound to the 
actual critical temperature T C, in the sense that for T > T~  v the spontane- 
ous magnetization is zero, (1-5) the correlation functions decay exponen- 
tially, (6-1~ and there is a unique (regular) Gibbs state. ~11-13) My purpose 
here is to show that, for a large class of N-component ferromagnets 
(1 < N < 4), all these properties are extremely simple consequences of a 
new (but not difficult) correlation inequality. This correlation inequality 
has also been used recently by Aizenman(14) as a lemma in one version of 
his proof of the Gaussianness of the continuum limit of q~J (or Isingd) 
models in dimension d > 4. 

Consider a finite one-component ferromagnet defined by the probabil- 
ity measure 

t i,j 

with J/j = Jji >/0 and h i ~ 0. Assume that each dly i is an even probability 
measure satisfying the hypotheses of the GHS and Lebowitz inequali- 
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ties.( 15-19,10) 2 Examples are the spin- �89 Ising model 

dt',(~) = t~(rp 2 -  1)dq9 (2) 

and the ~o 4 lattice field theory 

dt'i(q0) = const • exp( - aq9 2 - beg 4) dcp (3) 

(b > 0). 
Consider first the case of zero magnetic field, i.e., all h i = O. Then I 

claim that the correlation functions of the model (1) are bounded above by 
the correlation functions of the Gaussian model with the same pair interac- 
tion Jo and with single-spin measures having the same variance. That is, let 

c, = f tp 2 at,, (r (4) 

and 

dt'; (cp) = (27rc;)-~/2exp( - rp2/2ci) d~ (5) 

and let d/z' be the probability measure defined as in (1) but with dt'; 
replacing dv i. Then we have the following theorem. 

Theorem 1. Assume that all h i = 0, and that each dv i satisfies the 
hypotheses of the zero-field Lebowitz inequality. Then, for each product of 
spins 

cp A = 1-I~o/' (6) 
i 

(here A = {Ai) is a multi-index), we have 

o < ( #  L< L' (7) 

whenever the measure/~' is well defined. 

Proof. 
strate that 

(epA). > 0 is Griffiths' first inequality. (~6) We next demon- 

(~i~+)~ < ( ~ + ) ~ ,  (8) 

2 The GHS inequality O5-19) states that (r q~j; r =- (r - -  (q~iq~j>(qgk) -- <(Plq~k)<~j) -- 
<r + 2(r  0. The Lebowitz inequality in zero magnetic field O5-19) 
states that (r - (r - -  ( r  - -  (r  < 0. For both of these 
inequalities to be valid, it suffices (lsa9) that dr(cp) = e x p [ -  V(q0)] dq~, where V is even and 
differentiable, with V' convex on (0, or or that dr be a limit of such measures. Also, these 
inequalities hold for classical Ising models of arbitrary spin, by the "analog system" method 
of Griffiths. (2~ Finally, the zero-field Lebowitz inequality (but n o t  the GHS inequality) is 
valid under the weaker condition (1~ that dr (~0)= exp[-f(ep2)] d% where f is convex on 
(o, ~). 
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for all i, j .  To do this, consider the probability measure d/~a defined as in (1) 
but with ~Jo replacing J~j, with 0 < 2~ < 1. Then 

d (+i{~j>l~x...~ " 1 
k,1 

<~ E ( +iCPk ) ,~Jkl ( +lCPj ) ~ (9) 
k,l 

by the Lebowitz inequality. (I use the notation 

- ( l O )  

Now (9) is a system of differential inequalities for the functions 

Gg(X ) = (r cpj).~ (11) 

Since the right side of (9) is an increasing function of each element of the 
matrix G (in the relevant region Gy/> 0), it follows from a well-known 
lemma (21) that the solution of the differential inequality is bounded above 
by the solution of the corresponding differential equation with the same 
initial condition at ?~ = 0. This initial condition is 

Gij(O ) = Ci~ij 

and the solution of the differential equation is 

a ( ~ )  = [ G(O)-I - XJ] -1 

We thus have 

%(x) < 

(12) 

(13) 

(14) 

for all i, j.  But notice now that G/j0 t) is nothing other than the two-point 
function of the Gaussian model/~,; in particular, 

~ A 1 )  = (+,+j)  , (15) 

[This is easily seen by direct computation, or simply by noting that the 
Lebowitz inequality (9) becomes equality for the Gaussian model.] This 
proves (8). 

To derive the general case (7), we now use the Gaussian inequal- 
ity (=-24'1~ (which is a consequence of the same hypotheses as the Lebowitz 
inequality( 24,10) ): 

(r E ~ (+i~j)tt ~ E I-I (~i~)j)iz'"~" (t~A)# ' (16) 
pairings pairings 

by the Gaussian inequality for #, the inequality (8), and the Gaussianness 
of #'. �9 
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Remarks. 1. The measure /z' is well defined only so long as the 
matrix 

K =  G ( 0 ) - ' -  J (17) 

is strictly positive definite. Otherwise the solution (13) blows up before 
3 ,=1 .  

2. The proof of Theorem 1 is very similar to the proof of Simon's 
inequality in intermediate-bond form (Ref. 8, Theorem 3.1). A significantly 
stronger version of Simon's inequality has been proven by Brydges, FrSh- 
lich, and Spencer (BFS) (Ref. 10, Theorem 6.1) using entirely different 
methods. Tantalizingly, both this stronger inequality and Theorem 1 would 
follow immediately from the kind of argument used here, if it were true that 
any solution to the matrix differential inequality 

dG 0<~ ~ < GJG (18) 

( G , J  > / 0 )  necessarily satisfies 

G()~) <-< G(O) + )~G(O)JG(h) (19) 

(all inequalities interpreted elementwise). Unfortunately, this conjecture, 
while true for scalars, is false for matrices. 3 It would be interesting to find a 
proof of the BFS inequality using differentiaMnequality or duplicate- 
variable methods. 

3. Theorem 1 carries over immediately to the infinite-volume limit for 
any boundary conditions (b.c.) which respect the requirements Jy > 0 and 
h i = 0. For example, periodic, Neumann, and zero (-~ Dirichlet -- free) b.c. 
are all allowable; however, plus or minus b.c. are not. 

We now apply Theorem 1 to a translation-invariant model with all 
c / =  c and J~ -- J(i - j ) .  We define 

{~ = E J0j (20) 
J 

3 A counterexample can be found by taking the Ansatz 

~0,) = [a(~) b(~,)] 

with a(0) = 1, b(0) = 0. Inequality (18) requires that 0 < da/dX < 2ab and 0 < db/d)~ 
< a = +  b 2. We wish to violate inequality" (19) either on-diagonal [a()`)g 1 + ~b(),)] or 
off-diagonal [b()`) r ~a()`)], for some )` > 0. This can be arranged by taking a()`)= t + )2 + 
a 4 + B• 5 and b()`) = )` + )`3 + Da4 + E)`5 + F)`6 To satisfy (18) and violate (19) on- 
diagonal for h small and positive, take D < B < 2D/5 < 0. To satisfy (18) and violate (19) 
off-diagonal for )` small and positive, take D = 0, E = 1 and B < F < B/3 < O. 
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Then the norm of the matrix J, considered as an operator on l 2 (or on any 
l p space, 1 < p. < ~) ,  is at most ~-; so the Neumann series for G(1)=  
[G(0)-1 _ j ] -1  converges whenever 

< 1 (21) 

This is precisely the mean-field condition for the absence of a phase 
transition. (5'11'25) Moreover, it is easy to see that G(1) then decays exponen- 
tially if J does. For example, in the nearest-neighbor model with interaction 
strength fi on the lattice Z a (so that ~. = 2dfl),  we have 

G (l)/j < const • e x p ( -  moli - j ] )  (22) 

with mass gap 

m 0 = cosh- ' [ (2f lc)  - 1 -  ( d -  1)] (23) 

(Note that m 0 > 0 precisely when c~. =--2dBc < 1; this is because the 
mean-field critical temperature is exact for the Gaussian model.) Then 
Theorem 1 implies that (22) is an upper bound for the exact two-point 
function (in the non-Gaussian model t~), and hence the mass gap is at least 
that given by (23). 

Remark .  Strictly speaking, the above analysis should be carried 
through for each finite volume A, and then the inequalities carried over to 
the infinite-volume limit. But the result of such an analysis is obviously the 
one given above. 

We can also show that c~ < 1 implies zero spontaneous magnetization 
and a unique Gibbs state (or more precisely, a unique regular Gibbs state if 
the single-spin measure dv = dv i has unbounded support). Indeed, the 
exponential (or even integrable) decay of the two-point function in the 
zero-b.c, infinite-volume state implies these two other properties, by an 
argument using the GHS and F K G  inequalities. (26) The same conclusion 
can be obtained (by what is in essence the same argument) using an easy 
extension of Theorem 1 to the case h i > 0: 

Theorem 2. Assume that all h i >/0 and that each dv i satisfies the 
hypotheses of the GHS and zero-field Lebowitz inequalities. Then, for all 
i , j ,  

0 ~ (~Oi)/ ~ (f~i)~' (24) 

and 

whenever the measure/z' is well defined. 

(25) 
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Proof. 
We write 

and 

Let us fix J and imagine varying the magnetic fields h = { h k ). 

Mi( h ) = ( q~i) ix(h) (26) 

= (~Pif~j) Ix(h) " ( ~i ) ~(h)(~Pj) Ix(h) ( 2 7 )  

and similarly with primes for the quantities in the Gaussian model tt'(h). 
Then 

by an easy computation, and 

0 G/j 

Ohk 

~h k -- a i k ( h )  ( 2 8 )  

- (cpi; ~2; oPt)ix(h) < 0 (29) 

by the GHS inequality. Thus, by integrating (29), 

O0.(h ) <, O~(h = 0) (30) 

Inserting this in (28) and integrating again, we get 

Me < E aik( h = O)hk (31) 
k 

Now by Theorem 1, Gij(h = 0) is bounded above by the corresponding 
quantity in the Gaussian model/z'(h = 0): 

Gij(h = O) <<. G/j(h = 0) (32) 

Moreover, in the Gaussian model one has 

G~.(h) = G~(h = 0) (33) 

and 

M i' = ~,  Gi'k(h = 0)h k (34) 
k 

Combining (30)-(34) completes the proof. �9 

It follows from Theorem 2 that the spontaneous magnetization in the 
plus-b.c, state n for the model /~ is bounded above by the spontaneous 

4 Plus b.c. denotes an  external configuration which eventually dominates almost every (a.e.) 
configuration in every regular Gibbs state (but which does not  grow too fast). In the case of 
spins supported on the bounded interval [ -  M, M], it suffices to take a constant  configura- 
tion rpi = M; while for superstable unbounded  spins, it suffices to take qo i = K(log[il) 1/2 for a 
suitable constant  K. (2s) 
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magnetization in the state with the same b.c. for the Gaussian model/~'. But 
if c~ < 1, a direct computation shows that the spontaneous magnetization 
of the Gaussian model is zero in the infinite-volume limit; so the same goes 
for the original model/~. It then follows from the theorem of Lebowitz and 
Martin-L6f (27) (as amended by Lebowitz and Presutti (28) in the case of 
unbounded spins) that there is a unique (regular) Gibbs state. 

Finally, it is worth noting that a version of Theorem 1 holds also for a 
class of N-component isotropic ferromagnets with N = 2, 3, 4. Indeed, con- 
sider the model 

L ~,J " 

where ~i--  (~Pi (') . . . . .  cpS )) and J/j = Jji/> 0. Assume that each dv i is a 
rotationally invariant measure of the form 

dpi(~) = const • e x p ( -  al~0l 2 - bi l l  4) dcp (36) 

b > 0 (~04 model) or 

dui(cp ) = const • 6(l~p[ 2 - 1)d~ (37) 

(N-vector model). Then for N = 2,3,4 the Griffiths, Lebowitz, and 
Gaussian inequalities hold in the form (29-32'24) 

(r,~(l)t,e,(2) . . ,q19 (G N)  ,v,~ "e. " ) /> 0 (38)  

( q0~)cp~ ~) ) /> ( CpA ~) ) ( q ~ ) )  (39) 

(cpA(~)cp(S') < (cpA(~))(cp(S) ) for a :P B (40) 

(eP~ ~)) < ~.  /-I (q~176 ~) ) (41) 
p a m n g s  

(Here we write ~ )  instead of ~(~)A to denote a product of spin compo- 
nents, for notational convenience.) For N = 2 these inequalities hold under 
the weaker assumption that dpi(~ ) = exp[-f( l~[2)]d~ with f convex on 
(0, oo), or that dv i be a limit of such measuresJ 3'~~ Then we have 

T h e o r e m  3. Consider the model (35) with N = 2, 3, or 4 and all dp i 
as above, and let tt' be the corresponding N-component isotropic Gaussian 
model. Then, for each product ~ ) ,  we have 

0 < (cp~ ~) ) < (cp~ ~) ), ,  (42) 

whenever the measure/z' is well defined. 

The proof is virtually identical to that of Theorem 1, employing (38) in 
place of the Griffiths inequality, (40) and (41) in place of the Lebowitz 
inequality, and (41) in place of the Gaussian inequality. 
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Theorem 3 implies exponential decay of the correlation functions (of a 
single-spin component ~(~)) for T > T~ v and N = 2, 3,4, by an argument 
identical to that used for N = 1. Unfortunately, the N-component analog of 
Theorem 2 is problematic, since no sharp analog of the GHS inequality has 
yet been proven for multicomponent spins. (24'31) Nevertheless, the vanish- 
ing of the spontaneous magnetization for T > T~ MF in the N-vector model 
for arbitrary N has been shown by Simon (4) using a correlation inequality 
of Ginibre type. For N = 2 this implies that all Gibbs states are rota- 
tion-invariant (33) and that there is a unique translation-invariant Gibbs 
state.(33, 34) 
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NOTE ADDED IN PROOF 

References 35 and 36 contain additional material related to mean-field 
bounds. In particular, a result slightly stronger than Theorem 1 is proved in 
reference 36 for the special case of the spin-�89 Ising model. The proof uses 
Griffiths" third inequality (1) combined with the Krinsky-Emery-Simon (6'8~ 
iteration argument. I thank Professor Joel Lebowitz for calling these 
references to my attention. 

Brydges (37) has shown that a generalized form of Simon's inequality is 
an easy consequence of the strong Gaussian inequality (22'23'1~ Thus (19) 
holds for the spin systems considered here, but it cannot be proved by our 
differential-inequality arguments! 
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